Lecture contents

- Coupled oscillators
- Dispersion relationship
- Acoustical and optical lattice vibrations
- Acoustical and optical phonons
- Phonon statistics
- Acoustical phonon scattering

Few concepts from Solid State Physics 1. Adiabatic approximation

When valence and core ectrons are separated, general Schrödinger equation for a condensed medium without spin

$$
\begin{gathered}
H=\sum_{l} \frac{\mathbf{p}_{l}^{2}}{2 M_{l}}+\sum_{l, m} U\left(\mathbf{R}_{l}-\mathbf{R}_{m}\right)+\sum_{i} \frac{\mathbf{p}_{i}^{2}}{2 m}+\sum_{i, l} V\left(\mathbf{r}_{i}-\mathbf{R}_{l}\right)+\sum_{i, j} \frac{e^{2} / 4 \pi \epsilon_{0}}{\left|\mathbf{r}_{i}-\mathbf{r}_{i}\right|}=H_{L}+H_{e} \\
H \Psi(R, r)=E \Psi(R, r)
\end{gathered}
$$

- Mass of ions >1000 (for most semiconductors $>10^{2}$ times greater than mass of electrons
- Ion velocities >100 times slower
- Electrons adjust 'instantaneously" to the positions of atoms
- Separate ion and electron motion (accuracy $\sim \mathrm{m} / \mathrm{M}$)

$$
\begin{aligned}
& \Psi(R, r) \approx \psi\left(r, R_{0}\right) \Phi(R) \\
& H_{L} \Phi(R)=E_{L} \Phi(R) \\
& H_{e} \psi(r, R)=E_{e} \psi(r, R)
\end{aligned}
$$

Few concepts from Solid State Physics

2. Phonons

Hamiltonian for lattice motion (harmonic oscillations) :
$H_{L}=\sum_{l} \frac{p_{l}^{2}}{2 M_{l}}+\sum_{l, m} U_{0}\left(R_{l}^{0}-R_{m}^{0}\right)+\sum_{l, m} \frac{1}{2} C_{l, m}\left(u_{l}-u_{m}\right)^{2}+U_{a n h a r}$

Displacements show up as plane waves with weak interaction via anharmonicity:

$$
u_{k, \omega}=u_{0} e^{i k r-i \omega t}
$$

Energy in a mode:

$$
E(k, \omega)=\left(n(k, \omega)+\frac{1}{2}\right) \hbar \omega
$$

Equilibrium distribution (Bose Einstein):

$$
n(\omega)=\frac{1}{\exp \left(\frac{\hbar \omega}{k T}\right)-1}
$$

Phonon dispersion relation in GaAs

NNSE 618 Lecture \#11

Lattice vibrations

Lattice Hamiltonian:

$$
H_{L}=\sum_{l} \frac{p_{l}^{2}}{2 M_{l}}+\sum_{l, m} U\left(R_{l}^{0}-R_{m}^{0}\right)
$$

Binding energy vs. interatomic distance in a crystal

Expanding binding energy around the equilibrium position R_{0} :

$$
U(R)=U\left(R_{0}\right)+\frac{1}{2} C(\Delta R)^{2}
$$

with a force constant C

Diatomic chain

Let's consider diatomic chain to demonstrate acoustical and optical dispersion branches

Masses are connected by springs W
 equal spring constants, C, for simplicity

$$
\text { Force }=-C \cdot \Delta R
$$

With u and v, the displacements of respective atoms, we can write down classical equation of motion (second Newton law)

$$
\left\{\begin{array}{l}
M_{1} \frac{d^{2} u_{s}}{d t^{2}}=C\left(v_{s}+v_{s-1}-2 u_{s}\right) \\
M_{2} \frac{d^{2} v_{s}}{d t^{2}}=C\left(u_{s+1}+u_{s}-2 v_{s}\right)
\end{array}\right.
$$

The solution for displacements in the chain will be searched as traveling waves:

$$
\left\{\begin{array}{l}
u_{s}=u e^{i k s a-i \omega t} \\
v_{s}=v e^{i k s a-i \omega t}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
M_{1}\left(-\omega^{2}\right) u e^{i k s a-i \omega t}=C\left(v+v e^{-i k a}-2 u\right) \\
M_{2}\left(-\omega^{2}\right) v=C\left(u e^{i k a}+u-2 v\right)
\end{array}\right. \\
\left\{\begin{array}{l}
u\left(-\omega^{2} M_{1}+2 C\right)-v C\left(1+e^{-i k a}\right)=0 \\
-u C\left(1+e^{i k a}\right)+\bar{v}\left(-\omega^{2} M_{2}+2 C\right)=0
\end{array}\right.
\end{array}\right.
$$

For nontrivial solutions, determinant should be zero

$$
\begin{aligned}
& \left(2 C-\omega^{2} M_{1}\right)\left(2 C-\omega^{2} M_{2}\right)-C^{2}\left(1+e^{-i k a}\right)\left(1+e^{i k a}\right)=0 \\
& M_{1} M_{2} \omega^{4}-2 C\left(M_{1}+M_{2}\right) \omega^{2}+4 C^{2}-C^{2}[\underbrace{-i k a}+e^{i k a}+1]=0 \\
& M_{1} M_{2} \omega^{4}-2 C\left(M_{1}+M_{2}\right) \omega^{2}+2 C^{2}(1-\cos k a)=0 \\
& \omega^{2}=\frac{2 C\left(M_{1}+M_{2}\right) \pm \sqrt{4 C^{2}\left(M_{1}+M_{2}\right)^{2}-8 C^{2} M_{1} M_{2}(1-\cos k a)}}{2 M_{1} M_{2}}
\end{aligned}
$$

small k :

$$
\cos k a=1-\frac{(k a)^{2}}{2}
$$

$$
\omega^{2}=\frac{2 C\left(M_{1}+M_{2}\right) \pm \sqrt{4 C^{2}\left(M_{1}+M_{2}\right)^{2}-8 C^{2} M_{1} M_{2} \frac{(k a)^{2}}{2}}}{2 M_{1} M_{2}}=
$$

$$
\approx \frac{2 c\left(M_{1}+M_{2}\right)}{2 M_{1} M_{2}}\left[1 \pm\left(1-\frac{1}{2} \frac{M_{1} M_{2}(k a)^{2}}{\left(M_{1}+M_{2}\right)^{2}}\right)\right.
$$

acoustical: Θ

$$
\omega_{a c}^{2}=\frac{c\left(M_{1}+M_{2}\right)}{M_{1} M_{2}} \frac{M_{1} M_{2}}{\left(M_{1}+M_{2}\right)^{2}} \cdot \frac{1}{2}(k a)^{2}=\frac{c}{2} \frac{k^{2} a^{2}}{M_{1}+M_{2}}
$$

$$
\begin{aligned}
& \text { optical: } \oplus \\
& \omega_{\text {opt }}^{2}=\frac{C\left(M_{1}+M_{2}\right)}{\left(M_{1} M_{2}\right.}\left[\frac{4\left(M_{1}+M_{2}\right)^{2}-M_{1} M_{2}(\mathrm{ka})^{2}}{2\left(M_{1}+M_{2}\right)^{2}}\right] \simeq \\
& \simeq \frac{2 C\left(M_{1}+M_{2}\right)}{M_{1} M_{2}}=2 C\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right) \\
& K= \pm \frac{\pi}{a} \cos (\pm \pi)=-1 \\
& \omega^{2}=\frac{2 C\left(M_{1}+M_{2}\right) \pm \sqrt{4 C^{2}\left(M_{1}^{2}+M_{2}^{2}+2 M_{1} M_{2}-4 M_{1} M_{2}\right)}}{2 M_{1} M_{2}}= \\
& \simeq \frac{2 C\left(M_{1}+M_{2}\right) \pm 2 C\left(M_{1}-M_{2}\right)}{2 M_{1} M_{2}}
\end{aligned}
$$

acoust: Θ

$$
\omega_{a c}^{2}=\frac{2 c}{M_{1}}
$$

optical: \mp

$$
\omega_{0 \mu t}^{2}=\frac{2 c}{M_{z}}
$$

Dispersion relations for diatomic chain

$$
\omega^{2}=\frac{2 C\left(M_{1}+M_{2}\right) \pm \sqrt{4 C^{2}\left(M_{1}+M_{2}\right)^{2}-8 C^{2} M_{1} M_{2}(1-\cos k a)}}{2 M_{1} M_{2}}
$$

Solutions for small k :

$$
\omega_{a c}^{2}=\frac{c}{2} \frac{K^{2} a^{2}}{M_{1}+M_{2}}
$$

$$
\omega_{\text {opt }}^{2}=2 C\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right)
$$

Solutions for the edge of Brillouin zone $k=\pi / a$:

$$
\begin{aligned}
\omega_{a c}^{2} & =\frac{2 c}{M_{1}} \\
\omega_{o p t}^{2} & =\frac{2 c}{M_{2}}
\end{aligned}
$$

Acoustical and optical waves

For acoustical branch in long wavelength limit (at small k):

$$
u \approx v \quad \text { or } \quad u_{s} \approx v_{s}
$$

$$
\text { Sound velocity: } \quad v_{s}=\frac{d \omega}{d k}=\frac{a}{2} \sqrt{\frac{C}{M_{a v}}}
$$

For optical branch at $k=0$:
(Two atoms vibrate against their center of masses)

$$
u \approx-\frac{M_{2}}{M_{1}} v
$$

EQUILIBRIUM POSITIONS

Acoustical vibration:
The two atoms on the unit cell vibrate along the same direction

Optical vibration:
The two atoms on the unit cell vibrate in opposing motion.

Dispersion curves in semiconductor crystals

- For each wavevector there are 1 longitudinal mode and 2 transverse modes
- The frequencies are determined by force constants
- Usually longitudinal mode (LA) is stiffer
- Energy scales (for similar crystals) as $M^{-1 / 2}$
- Atomic vibrations are in THz range

Si

Reduced wave number $k / K_{\max }$

BaAs

Reduced wave number $k / K_{\text {max }}$

Example: shell model

AnAs

From Singh, 2003

Anisotropy of phonon dispersion curves

Experimental (points) and calculated phonon dispersion curves for Si

From Yu, Cordona, 2002

Quantum harmonic oscillator

Quantum harmonic oscillator: Hamiltonian

$$
H=\frac{p^{2}}{2 M}+\frac{1}{2} C x^{2}
$$

Solution gives resonance frequency (as in classical mechanics)

$$
\omega^{2}=\frac{C}{M}
$$

And quantum oscillation spectrum: (n may be considered as number of "quasiparticles")

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

Quantization of lattice vibrations: phonons

For a single oscillator the frequency is fixed, but when many oscillators interact we have a number of modes (normal modes)

$$
\omega_{k}
$$

Each mode is occupied by n_{k} phonons $\quad E_{k}=\left(n_{k}+\frac{1}{2}\right) \hbar \omega_{k}$

For a 1D chain states are determined as: $\quad k=\frac{2 \pi n}{N a}$; for $\quad n=0, \pm 1, \ldots \pm \frac{N}{2}$ function
Occupancy of modes is given by Bose-statistics:

$$
n(\omega)=\frac{1}{\exp \left(\frac{\hbar \omega}{k T}\right)-1}
$$

$\langle n\rangle$

NNSE 618 Lecture \#11

Optical phonons: Raman scattering

- Inelastic light scattering = Raman scattering gives information on optically active vibrations in a material
- Wavevector of photons is SMALL
- Stokes (creation of vibration) and anti-Stokes (emission of vibration)
- Symmetry and selection rules: Raman scattering intensity depends on geometry and polarization

> GaAs

Fig. 7.21. Raman spectra of three zinc-blende-type semiconductors showing the TO and LO phonons in both Stokes and anti-Stokes scattering. Note that the vertical scales are not the same for all spectra.

Lattice scattering rate calculation

Goal: calculation of the scattering integral or relaxation time:

$$
\left.\frac{\partial f}{\partial t}\right|_{\text {coll }}=\frac{f-f_{0}}{\tau}=\int\left[f_{k^{\prime}}\left(1-f_{k}\right) W\left(k^{\prime}, k\right)-f_{k}\left(1-f_{k^{\prime}}\right) W\left(k, k^{\prime}\right)\right] \frac{d^{3} k^{\prime}}{(2 \pi)^{3}}
$$

Step 1. Determine scattering potential

$$
H \propto e^{i q r-i \omega t}
$$

Step 2. Calculate matrix elements from k ' to k

$$
H_{k^{\prime} k}=\int_{V} \psi_{k^{\prime}}^{*} H \psi_{k} d^{3} r
$$

Step 3. Calculate transition rate from k^{\prime} to k using $\quad W\left(k^{\prime}, k\right)=\frac{2 \pi}{\hbar}\left|H_{k^{\prime} k}\right|^{2} \delta\left(E(k)-E\left(k^{\prime}\right)-\hbar \omega\right)$
"golden Fermi rule"

Step 4. Calculate state relaxation time $\left.\quad \frac{\partial f}{\partial t}\right|_{\text {coll }}=\frac{f-f^{0}}{\tau(k)}=\sum f_{k^{\prime}}\left(1-f_{k}\right) W\left(k^{\prime}, k\right)-f_{k}\left(1-f_{k^{\prime}}\right) W\left(k, k^{\prime}\right)$

Step 5. Average relaxation time $\langle\tau(k)\rangle$

